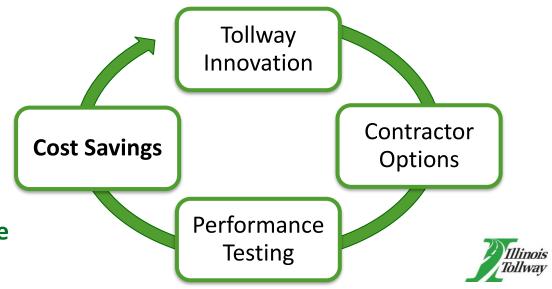


March 12, 2019
Cynthia Williams - Illinois Tollway
Deputy Chief of Program Implementation

The Tollway's SMA Innovation Evolution

- Implemented FRAP and RAS
- Higher asphalt binder replacement
- Implemented WMA
- Ground tire rubber
- Rejuvenators



Cost Savings – Created by Innovations

Contractor options

- Asphalt binder replacement
- Ground tire rubber
- Rejuvenators
- Use of aggregates
- Performance testing

RESULT: Durable and affordable asphalt mixes

Stone-matrix asphalt (SMA) used for all mainline overlays

2008 to 2009 – Full-depth asphalt on the Jane Addams Memorial Tollway (I-90) in Rockford area

2015 - Reagan Memorial Tollway (I-88) rehabilitation

2018 – Veterans Memorial Tollway (I-355) overlay

2018 - I-88 rehabilitation, Edens Spur, I-294 @ O'Hare

Seven asphalt producers

ShouldersThe Tollway's Sandbox

Friction Surface SMA

- High-traffic pavements and curves
- Coarse aggregate: quartzite, granite, diabase/trap rock, crushed steel slag

Binder SMA and Surface SMA

- Coarse aggregate: typically crushed gravel (also surface aggregates)
- 2008 friction evaluation acceptable for tangents

Coarse Aggregates for Tollway SMA

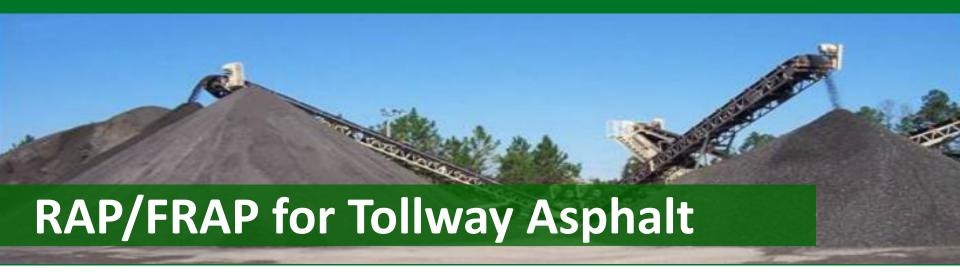
- Friction aggregates Non-Illinois sources, except slag
- Crushed gravel Southern Wisconsin and Northern Illinois
- 2015 Evaluated local crushed gravel and dolomite sources
- 2018 Implemented aggregate testing, including coarse FRAP

Local Aggregates for Tollway SMA

2015 evaluation approach

- Aggregate breakdown Micro-Deval
 - Mini LA abrasion
 - Compares to national research

Category I & II FRAP


- Extract using the analyzer
- Run through the Micro Deval

2018 - Micro-Deval specifications for coarse aggregates and FRAP

Quality sources

- Tollway requires documentation of the RAP source
- Tollway mainline RAP is separated from shoulder or IDOT mixes*

RAP and FRAP production

- RAP/FRAP stockpiles must be tested at a required interval
- All gradation and percent AC must be within a tolerance of mix design JMF targets

RAS

Quality sources

- Guidelines developed with IEPA
- Source and contractor testing
- Option for up to 5 percent RAS in mixes

Asphalt Binder Replacement – 2009 SMA

- This table was introduced into Tollway specifications in 2009 – and was for SMA mixes only
- The intent was to incentivize fractionalization of RAP and use of RAS

Reclaimed Material	Binder Replacement %	Asphalt Binder Options
Category I FRAP only	0 -20	SBS PG 76-22
Category I FRAP only or with RAS	21 - 30	SBS PG 70-28
Category I FRAP & RAS	31 - 50	SBS PG 64-34

Asphalt Binder Replacement Now

Reclaimed asphalt material (as allowed in Tollway Tables 7 & 8)		RAP ¹ //FRAP/RAS	FRAP only or with RAS	Category 1 FRAP with RAS	
	ABR		18-33%	34-50% ^{2/}	
Allowable Mix Options	SMA and IL-4.75	SBS 70-28 GTR PG 70-28 PG 58-28 10% Dry GTR		SBS 64-34 GTR PG 64-34 PG 52-342 ^{3/} 10% Dry GTR	
	Binder and surface course	PG 58-28		PG 52-34 ^{3/}	
	Asphalt stabilized subbase	PG 58-28 ^{4/}			

^{1/} RAP not allowed in SMA

^{2/} Allowed up to 60 percent ABR on N50 IL 19.0mm binder

^{3/} PG 46-34 shall be considered an equivalent to PG 52-34

^{4/} Allowed up to 65 percent ABR on asphalt stabilized subbase

Tollway's Approach to Equivalent Performance Balanced Mix Design

Rutting

Hamburg @ 20,000 passes

SMA < 6.0mm

Contractor Options

Warm mix
ABR
PG binder grade
SBS polymer
GTR (terminal and dry process)

...and now,
Rejuvenators are coming soon...

Cracking

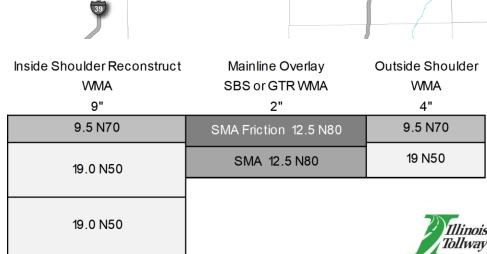
DCT $SMA \ge 600 \text{ J/m}^2$

2018 SMA Mix Designs

- Six contracts
- Seven producers
- 323,151 tons of SMA
- Five "local" sources used
- Micro Deval = 7.7 to 11.6
- 17 of 18 SMA designs used coarse FRAP

N80 IL 12.5 REC SMA - Performance

Contractor	Tollway Mix #	Mixture Description	ABR	Modification	DCT	Hamburg
Plote	90WMA 1841	Binder	50.1	PG 46-34 +10% ECR (dry process)	652 J/m ²	-1.83 @20,000
Curran	90WMA 1833	Surface	37.1	PG 46-34 +10% ECR (dry process)	1510 J/m ²	-5.92 @20,000
Geneva	90WMA 1839	Friction surface	25.8	PG 58-28 +12 GTR (terminal)	967 J/m²	-4.61mm @20,000
Rock Road	90WMA 1824	Friction surface	37.6	SBS PG 64-34	904 J/m ²	-3.36mm @20,000


I-88 Innovation Success Story

Mill and overlay of existing composite pavement

Contractor options being utilized

Mainline options

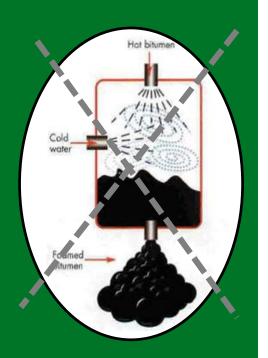
- Dry-process GTR
- Terminal GTR
- Hybrid GTR/SBS
- SBS polymer
- Shoulder
 - Option for use of rejuvenators

DEKALB

KANE

Cost Savings on I-355

Shoulder Overlay Mainline Overlay Army Trail Mainline Overlay Lane 1 Mainline Overlay All Other Add-A-Lane New Shoulders **WMA** SBS or GTR WMA SBS or GTR WMA SBS or GTR WMA SBS or GTR WMA **WMA** 1.75" 2.5" 4" 4" 14" 9" 9.5 N70 SMA Friction 12.5 N80 SMA Friction 12.5 N80 SMA Friction 12.5 N80 9.5 N70 SMA Friction 12.5 N80 4.75 N50 SMA 12.5 N80 SMA 12.5 N80 SMA 12.5 N80 19.0 N50 4.75 N50 4.75 N50 19 N90 **Substantial overlay from I-55** 19.0 N50 to Army Trail Road 19 N70 **DUPAGE** 19 N 50 4 inch SMA over existing PCC Full-depth asphalt add-a-lane


Systemwide Cost Savings Realized

Item	Depth, inch	Layer Description	Tons	\$/Ton
1	2	Stone matrix WMA surface friction course, IL-12.5, N80 (135 Lb/SY/In)	204,771	\$81.02
2	2	Stone matrix WMA binder course, IL-12.5, N80 (114 Lb/SY/In)	118,380	\$87.07
3	Var	Polymerized WMA binder course (112 Lb/SY/In)	93,782	\$80.09
4	Var	WMA surface course (112 Lb/SY/In)	100,596	\$93.87

Foaming Restrictions

Future Warm Mix changes

Contractor options

- 0-20 RAP can use foaming
- Any FRAP, RAS or >20 percent RAP chemical foaming required

Cold weather

- Chemical foaming only when beyond temperature specifications
- Increase 50 percent additive from mix design target

	WMA Binder	WMA Surface	WMA IL-4.75
	Course	Course	IL-4.75
Minimum Ambient Air Temperature (In shade)	32°F and Rising	40°F and Rising	50°F and Rising

The Future of Balanced Mix Design

Where we are going....
you won't need
volumetrics!

Resultant Binder Testing

Resistant to rutting and cracking for a specific temperature range /traffic level

Hamburg

Recovered PG Grade of the Mix

Extraction, recovery and grading of each individual design

This is the ONLY way to know the final PG grade in the pavement

Factors that will affect PG grade

- ABR
- Source of RAS/FRAP
- Virgin binder
- Rejuvenator, warm-mix additive or modifier

Recovered Binders

Next step in performance testing

Targets on recovered binders

Shoulders	PG 64-22
Mainline	PG 70-22
High volume	PG 76-22

What's the real PG in the road?

N80 IL 12.5 REC SMA – Recovered Grading

Contractor	Tollway Mix #	Mixture Description	ABR	Modification	Recovered Grading
Plote	90WMA 1841	Binder	50.1	PG 46-34 +10% ECR (dry process)	PG 72.5-24.9
Curran	90WMA 1833	Surface	37.1	PG 46-34 +10% ECR (dry process)	PG 70.1-23.2
Geneva	90WMA 1839	Friction surface	25.8	PG 58-28 +12 GTR (terminal)	PG 73.2-28.9
Rock Road	90WMA 1824	Friction surface	37.6	SBS PG 64-34	PG 78.9-30.2

