I-39 HMA Overlay & Rubblization Experimental Work Plan

Project Identification

- Condition Rating Survey
 Sensor data collection
 Visual pavement distress identification
- Interstate Pavement Review Team
 Evaluates Interstate pavement referencing pavement rehabilitation timeframe

Needs Assessment

Prioritizes roadways based on CRS value, Average Daily Traffic and Functional importance

Needs Assessment

- Prioritizes roadways based on CRS value, Average Daily Traffic and Functional Importance
- Describes the pavement condition in terms of
 - Critical Backlog XXXXX Backlog Accruing

Data Collection – Existing Conditions

 I-39 Condition Rating Survey Results 2012 CRS
 -NB 3.8 / SB 3.0
 -Poor Condition

> Pavement Distresses -Durability Cracking -High Level Infrequent

Transverse Cracking -Medium to High level

Data Collection – Existing Conditions I-39 Condition Rating Survey Results

Joint Deterioration Frequent / Spalling Greater than 6 inches

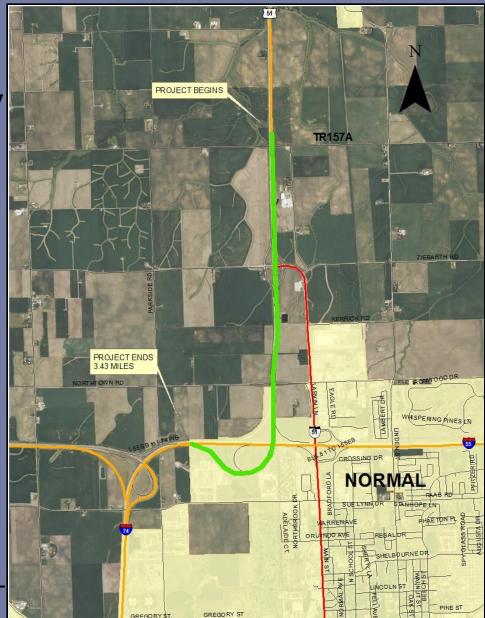
Centerline Deterioration High Level / Spalling Greater than 6 inches

Data Collection

 I-39 from I-55 to N of TR 157A in McLean County

Constructed in 1989

15 ft Hinge Jointed PCC Pavement


10 ¾ inch

Tied PCC shoulders

4-inch Stabilized Sub-base, CAM II

16-inch Processed Lime Modified Soil

19,000 ADT, 28 % Trucks, 33 Million ESAL

Project Scope

I-39 Pavement Issues

- Extensive existing patching in both NB & SB driving lanes
 - Patching survey identified 12% additional patching required
 - -Pavement integrity
- Internal Roughness Index -NBL 127 -SBL 193 -Ride quality

I-39 Pavement Rehabilitation

- Programmed in the FY2008-FY2013 MYP
 - I-55 to Woodford Co Line -- 9.55 miles
 - -Concrete Pavement Rehabilitation
 - -\$5,700,000
- Revised project scope in the FY2010-FY2015 MYP
 - -Patching and Interstate Policy Resurfacing
 - **-**\$9,100,000

I-39 Pavement Rehabilitation

- Revised project scope in the FY2012-FY2017 MYP
 - -Patching and Structural Overlay
 - -\$12,400,000
 - Project scope revised due to rapid pavement deterioration
- Revised project limits and program cost in the FY2013-FY2018 MYP
 - -I-55 to N of TR157A --3.43 miles
 - -Rubblization / HMA Overlay
 - -\$6,690,000
 - Project limits reduced due to limited funding

I-39 Pavement Structure and Field Testing

Region 3/ District 5 Acting Materials Engineer Steve Robinson, P.E.

I-39 Pavement Structure and Field Testing

- Existing Pavement
 - 20 year pavement design!!! We're there!!!
 - Good pavement between bad joints
 - 6' patch needed at all D.L. joints in some areas
 - Accelerated distress present in past 3 years
 - Beyond point where patching is feasible

I-39 Patching Survey

Existing Patching

Six Patching Contracts since 2009 totaling \$2,090,000

-10% Total Patching

-Patching concentrated in the driving lanes

New Patching Estimated 12% Patching

I-39 Pavement Structure and Field Testing

- Subgrade investigation Nov. 2011
 In place moisture samples (highly variable)
 Soil Classification
 IBV with DCP testing (2-100 highly variable)
- Pavement cores: 13 ¹/₄" max (plan thickness 10 3/4")
- CAM II cores: 6" max (plan thickness 4") No thin sections

Core Analysis

Alkali Silica Reactivity (ASR) possible culprit

Reaction of Alkali (Na, K, OH) in cement with reactive silicas in fine aggregates

Reaction forms a hygroscopic gel

Gel absorbs water, expands into void structure and cracks paste/aggregates

Process continues until one of the three elements is used up or eliminated

Core Analysis

BMPR assistance

-Cores to consultant lab for petrographic analysis

 Analysis determined "distress is primarily, if not wholly due to the effects of expansion associated with ASR"

D-3 Researched Existing Materials
 -High Alkali cement, no fly ash
 -Expansive sand source
 -F/T durable coarse aggregate

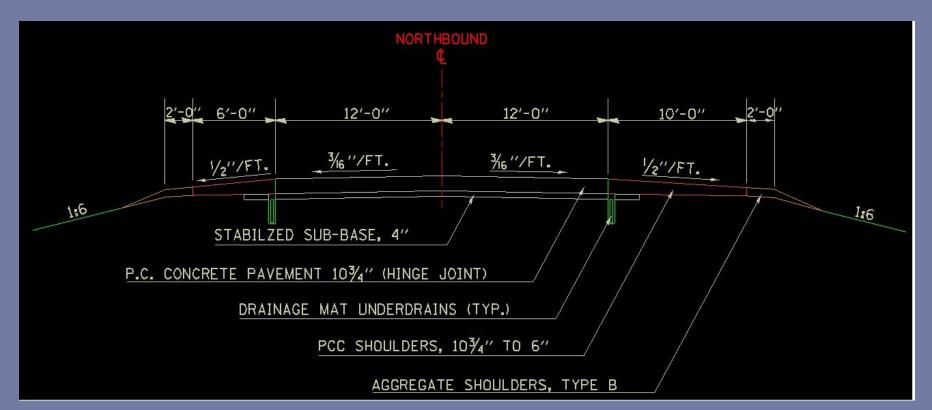
The Fix

- No economical fix for existing ASR distress
- Subgrade investigation showed rubblization an option using Multi-Head Breaker

Fine Graded IL 19.0 Mix

HMA

Fine Graded IL 19.0 used in 2010, 2011,2012


140,000 tons between 5 different Interstate projects Better density Reduced permeability Reduced segregation Excellent Hamburg results

Dense Graded Polymer Surface

HMA

- Bottom lift: Neat IL 19.0 Fine Graded, N90
- Top Binder: Polymer IL 19.0 Fine Graded, N90
- Surface: Polymer Mix D, N90
- Pay for Performance specification for mainline mixes

 Region 3/District 5 Program Development Project Engineer Nancy Fasig, P.E.

Evolving project scope

Funding Limitations

Profile Grade Considerations

Traffic Control And Staging

Sample of Alternatives Analyzed

Patching and 6 inch HMA Overlay

- \$6,690,000 Estimated cost
- Anticipated Service Life 10-12 years
- Disadvantages
 Pavement integrity
 Reflective cracking
 Ride Quality

Sample of Alternatives Analyzed

- Rubblization and HMA Overlay, 11 ¼ inches
 - \$13,880,000 Estimated cost
 - Anticipated Service Life 20 years
 - Advantages
 Improved Drainage
 Mitigation of ASR pavement
 - Disadvantages
 Project Cost
 Profile Grade issues

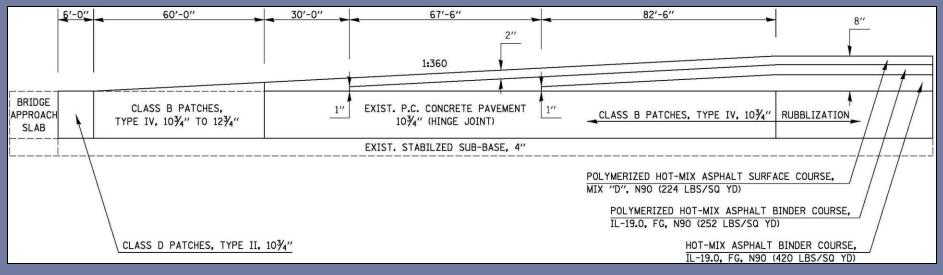
Final Project Scope and Budget

- Rubblization and HMA Overlay, 8 inches
 - Experimental Work Feature
 - \$11,500,000 Estimated Cost
 - Anticipated Service Life 15 years
 - Advantages

Improved Drainage with new pipe underdrains Mitigation of ASR pavement Reduction in Construction Cost

Disadvantages

Possible Shorten Service Life


- Profile Grade Considerations
 - Typical rubblization project has significant existing HMA overlay
 - Rubblization of bare PCC pavement has a greater net profile grade change with unique issues
- Effect of Profile Grade Change of various alternatives
 - Greater grade changes greatly affect transition locations and costs
 - Design transition details prepared for all alternatives

Additional options reviewed

- Unbonded PCC Overlay 14" Grade Change
- Patching and 3-3/4", 5", and 6" HMA overlays
- Rubblizing and 11-1/4" HMA
- Pavement Replacement 15-1/2" HMA /11" Jointed PCC
- Experimental Features with Rubblizing and 8" HMA

Profile Grade Considerations

- Maintain Existing Vertical clearance at all overhead structures
 - Three Span with vertical tie-down abutments that are not feasible to raise
 - Transition with variable thickness Class B Patch
- Meet existing profile grade at all mainline structures
 - Vaulted approach pavements
 - Transition with variable thickness Class B Patch

Profile Grade Considerations

- Maintain Existing Drainage ditches and elevations
 - Minimize reconstruction or replacement of existing drainage structures
 - Accomplished by use of 1:5 foreslopes until touchdown with existing 1:6 foreslopes
 - Reduces earthwork
 - Ensures positive pipe underdrain outlet in median
 - Eliminates ROW impacts

Traffic Control And Staging

- Staged construction selected over median cross-over
 - High cost of median cross-over and need for multiple access or cross-over locations
- Queuing analysis performed as part of Traffic Management Analysis
 - No queuing expected
 - Average user delay less than 2 minutes
- Staged construction worked well on recent similar project
- Offset Stage 1 traffic 3' onto shoulder to comply with work zone drop-off policies
 - Patching required to put Stage 1 traffic onto DL shoulder
 - Success of shoulder inlay questionable
- Stage 2 traffic to use overlaid PL shoulder for required 3' lane shift

I-39 Pavement Rehabilitation Strategy – Experimental Work Feature

- Case Studies
 - I-57 north of Pesotum in Champaign County
 - 6 and 8 inch Hot Mix Asphalt Overlay on rubblized PCC pavement
 - Constructed in 1990
 - Resurfaced in 2010
 - 20 year service life

I-57 in Effingham County

- 8 inch Hot Mix Asphalt Overlay on rubblized PCC pavement
- Constructed in 1996
- Resurfaced in 2011
- 15 year service life

1-39 Pavement Rehabilitation Strategy – Experimental Work Feature

- Rubblize PCC Pavement and Experimental Design Thickness Hot Mix Asphalt Overlay
 - Propose HMA thickness of 8 inches in lieu of 11 ¼ inches derived from the limiting strain criterion in the design procedure
- Objectives of the experiment
 - Evaluate the performance of a thinner HMA Overlay on a lower-volume interstate route
 - Establish recommendations for the rehabilitation of the ASR-distressed, 15ft hinge jointed pavements

Experimental Work Plan

Plan of Study and Evaluations

 Annual inspections as visual distress surveys, rutting measurements, and falling weight deflectometer testing

Field checks to watch for early

SPRING CONSTA

- signs of fatigue cracking in the
- wheelpaths or unusual signs of distress

Experimental Work Plan

- Monitor Overall Performance
 - Additional policy overlay, 3 ³/₄ inches will be placed
 - Resulting in a total overlay thickness of 11 ³⁄₄ inches
 - Monitored by District Bureau of Operations

Experimental Work Plan

- Evaluation Timeframe
 - Evaluated for both performance and maintenance for a period of at least 5 years

Control Section

- I-57 SB from south of Olympian Drive to 2 miles south of Thomasboro
 - Similar Average Daily Traffic and Truck Volumes
 - HMA Overlay on Rubblized PCC Pavement, 11 ¼ inches
 - Pipe Underdrain Removal and Replacement
 - Completed Fall 2012

