Design-Build Experiences in Canada

David Hein, P.Eng.
Principle Engineer
Infrastructure Management Division
Presentation Overview

- Overview history of design/build process
- Canadian experience over the past 15 years
- Examples of the “good” the “bad” and the “ugly”
- How can design/build work for you?
- Owner, designer, contractor and maintenance perspectives
- Design/build in public/private partnerships
- Value added possibilities
Queen Elizabeth Way
Queen Elizabeth Way
Project Details

- Reconstruction (1992) of 4 lane rural controlled access highway to 6 lane urban cross section (15 miles)
- Project value ~ $100 million (design/build)
- Consortium of 2 major engineering designers and 2 contractors
 - Engineers – 5 percent equity each
 - Contractors – 45 percent equity each
- Engineers share design by discipline
- Contractors share work horizontally – one doing demolition and grading, one doing granulars and paving
Queen Elizabeth Way
Good, Bad and Ugly

- **Good:**
 - Integration of construction and design
 - Rapid design and construction
 - Ability to adapt and be very dynamic

- **Bad:**
 - Two hats for engineers with equity
 - Construction split led to many disputes and blame

- **Ugly**
 - Contractor animosity and differing styles
 - Several legal battles still not yet resolved
Highway 47/48 Intersection
Highway 47/48 Intersection
Project Details

- Reconstruction and widening of a highway intersection
- Project value ~ $1 million
- Design/build
- Project let to permit smaller contractors and engineers to bid
- Project won by a large local contractor
- Project very straightforward
Expanding the Realm of Possibility

Highway 47/48 Intersection
Good, Bad and Ugly

- **Good:**
 - Small D/B project allowed smaller contractors to bid
 - Easier for owner to administer
 - Relatively straightforward project

- **Bad:**
 - Smaller contractors still had trouble putting together a D/B team
 - Straightforward project left little room for innovation

- **Ugly:**
 - No real cost advantage for owner
 - Higher costs for D/B team not recovered
Highway 407 - ETR
Highway 407 ETR
Project 1 Details

- Green field construction of 4 and 6 lane freeway (60 miles)
- Project value ~ $1 billion (design/build)
- Project 1 – 1996-1998
 - Consortium of 2 major engineering designers and 3 major contractors (plus multiple subcontractors)
 - Engineers share design by discipline
 - Contractors share work by discipline and horizontally – one doing grading and granular placement, one doing granular materials and paving and one doing bridges
- Owner hires independent engineer (police)
Highway 407 ETR
Good, Bad and Ugly

- Good:
 - Rapid design and construction
 - Large project and potential for value engineering
 - Owner provided $1 million for design to 3 teams

- Bad:
 - Initial DBOO changed to owner finance D/B
 - Construction split led to may disputes and blame
 - Team hands tied to existing specifications

- Ugly
 - Owner “police” stymied innovation
 - Internal quality plans often circumvented
Highway 407 ETR

Project 2 Details

- Green field construction of 4 and 6 lane freeway (25 miles)
- Project value ~ $ 400 million + buyout ($3.1 billion)
- Project 2 – 2000-2002 (DBOO – 99 year lease)
 - Spanish/Canadian engineering consortium
 - All design and construction subcontracted locally
 - Private - therefore little government involvement
 - Owner and builder from the same company
- Owner provides public safety overview only
- Independent safety audit completed by PEO
Highway 407 ETR
Good, Bad and Ugly

- Good:
 - Very rapid design and construction
 - Very experienced international management team
 - Significant freedom for value engineering
 - Very little “red tape”, decisions rapid and final

- Bad:
 - Sometimes ownership led to conflicts
 - Focus on speed, quality typically “just” acceptable

- Ugly
 - Private sector owners significantly “squeezed” the local engineers and contractors
Toronto Humber Bridges
Toronto Humber Bridges
Project Details

- Replacement of 2 river bridges
- Project value ~ $ 75 million (design/build)
- Project completed 1998-1999
 - Replacement of two bridges along the main access roadway to downtown Toronto
 - AADT in excess of 125,000
 - Incentive contract for reduced construction time
- Owner takes a “hands off” approach
Toronto Humber Bridges
Good, Bad and Ugly

- **Good:**
 - Very rapid design and construction
 - Won by very experienced contractor
 - Expected three year project completed in 14 months
 - Significant reduction in user delay
 - Owner paid $ 5 million bonus

- **Bad:**
 - Nothing

- **Ugly**
 - Nothing
Highway 104 Cobiquid Pass
Highway 104
Project Details

- Green field 4 lane rural highway (60 miles)
- Design/build
- Project value ~ $ 100 million
- Consortium led by 2 major “imported” contractors and two local contractors
- Engineering led by one “imported” engineer and two local engineering firms
- Road financed by owner tolls
Highway 104
Good, Bad and Ugly

Good:

- Significant “partnering” with the owner
- Owner and builder “experts” left to come to technical agreements which were ratified by the owner and builder senior representatives
- Project split vertically with each contractor and engineer responsible for the design of a longitudinal section
- Common pavement designer for entire project
- Opportunity for owner to “upgrade” specifications

Bad and Ugly:

- Nothing really, perhaps limited local participation
Green Lane – York Region
Green Lane – York Region

Project Details

- New construction of 4 lane roadway (5 miles)
- Design/build
- Project value ~ $10 million increased to $15 million
- Construction 1999 - 2000
 - Water main and sanitary added after award
 - One contractor
 - Subcontracted engineering and quality control
- Owner hires firm to put together the D/B package
- Owner provides independent review
Green Lane – York Region
Good, Bad and Ugly

- Good:
 - Rapid design and construction

- Bad:
 - Owner ran project like it was conventional
 - Continuous owner interference

- Ugly
 - Owner inexperienced in evaluating bid quality
 - Pavement design selected too thin
 - Contractor quality plan not followed
 - Resulted in independent review of entire D/B Process
Moncton - Fredericton Highway
Moncton – Fredericton Highway
Project Details

- Green field development – 4 lane rural (120 miles)
- Design/build/own/operate (25 years)
- Construction from 1998 to 2000
- Project value ~ $400 million + concession
- Initially toll booths changed to shadow toll
- One major contractor (financier) + 2 major “imported” engineers and some local engineers
- Several fair sized local contractors
- Engineering joint venture and construction joint venture
- Project team provided both QA and QC
Moncton – Fredericton Highway
Good, Bad and Ugly

■ Good:
 ● Rapid design and construction

■ Bad:
 ● EJV and CJV frequently at odds

■ Ugly
 ● Owner unwilling to be creative and adopt design and construction improvements and VE
 ● Some internal disputes regarding costs
 ● Contractor sued the engineers
 ● Major dispute over the quality of and existing roadway section to be taken over
Design-Build
Confederation Bridge
Confederation Bridge Project Details

- Construction of a 15 mile bridge crossing over the Northumberland Straight between NB and PEI
- Federal government design/build project
- Constructed 1996 to 1998
- Project value ~ $1 billion
- One major contractor and an engineering joint venture
- Set up as a CJV and EJV
Confederation Bridge: Good, Bad and Ugly

- **Good:**
 - Excellent cooperation amongst the designers and constructors

- **Bad:**
 - Lack of use of local construction and engineering firms

- **Ugly**
 - Early failure of bridge deck surfacing system caused in part by focus on significant liquidated damages
 - Owner focus on schedule, not quality
Anthony Henday Highway
Anthony Henday Highway
Project Details

- Green field development of 4 and 6 lane highway (15 miles)
- Design/build/operate (25 years)
- Construction start – March 2005
- Project value ~ $600 million including concession
- Consortium of contractors and engineers (no equity)
- Shadow tolls and concession period based on life or number of equivalent single axle loads (traffic component)
Anthony Henday Highway
Good, Bad and Ugly

- **Good:**
 - Significant government consultation with industry over the request for proposal and design details
 - Three stage RFP process (two technical and one financial submission)
 - Project won by local contractors

- **Possibly Bad:**
 - Lack of significant local engineering representation but significant imported engineering experience

- **Ugly**
 - Too early to tell
Sea to Sky Highway
Project Details

- Reconstruction, widening and rehabilitation of an existing highway (120 miles)
- High profile – improvements for 2010 winter Olympics
- Design/build/operate (20 years)
- Project value ~ $700 million
- Construction to commence in 2005
- Large international consortia bidding the project
- Operations payments linked to safety and highway availability
- Difficult construction conditions through mountainous terrain
Sea to Sky Highway
Good, Bad and Ugly

- Good:
 - 3 teams provided with $1.5 million honorarium
 - Project team (ours) divided project vertically
 - One safety, one geotechnical and one pavement designer for the entire project (consistency)

- Bad:
 - Owner lack of understanding of D/B process

- Ugly
 - Extremely frequent owner modification of the RFP
 - Frequent owner required “proposal” meetings
 - All teams likely spent twice the honorarium costs
Ways to Make D/B Work

- Hire an expert to “interpret” the owners requirements and develop the terms of reference
- Keep the projects to a reasonably large size (suggest no less than $ 10 million, preferably >$ 50 million
- Promote the use of local “talent”
- Use end performance specifications
- Select specific and clear performance criteria
- Make the builder responsible for the work
- Pay an honorarium commensurate with the value of the work
- Promote innovation
Primary Benefit of D/B

- Projects are completed in much shorter time frame and reduced user impact
- Integration of design and construction tends to promote efficiency
- Significant reduction in red tape and approval times
- Promotes local talent and international competitiveness
- Typically results in value engineering savings