Reduction in Number of Mixes Designs
Reduction in Number of Designs

- Eliminate
 - N105 Binder and Surface - IN PROGRESS
 - IL-12.5 Surface Mixes – IN PROGRESS
 - N30 “All Other Mixes” (i.e. 2% Voided BAM for stabilized sub-base and shoulders)
 - IL-19.0 Coarse Graded Mixes
- ABR & Percent of RAP / FRAP / RAS
 - Developed Committee to Address
HMA Fine Graded 19.0 Mix
Agreed at Joint HMA TWG to Abandon Coarse Graded IL-19.0 & go with Fine Graded IL-19.0

BMPR Revised BDE Special *Mixture Design Composition and Volumetric Requirements*

- Redefines our current IL-19.0 to be less coarse
- Eliminates reference to N105 & 12.5 *Surface* Mix
- Target November 2014 Letting as BDE
- BMPR Special until then
The focus is on Asphalt Binder Replacement and not on how much RAP/FRAP or RAS is incorporated.
PG Liquid Binder

Usage
PG Binder Used (in thousand tons)
Liquid AC Sampling at HMA Plants
2013 District PG INV Field Samples

<table>
<thead>
<tr>
<th>District</th>
<th>Sample Total</th>
<th>Off Test</th>
<th>% Off Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>419</td>
<td>17</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>3</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>145</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>164</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1241</td>
<td>25</td>
<td>2.0 %</td>
</tr>
</tbody>
</table>
Potential PG Binder Changes

- Softer grades of PG binder
 - PG40-40, PG52-34
- Reintroduction of Recycled Engine Oil Bottoms (ReOB) to binder
 - Cost/Benefit, method of measurement
- Classification of binder using MSCR in lieu of PG testing
 - Grade to high temperature of location
 - Mix performance unknown
- Asphalt Binder Replacement (ABR) rejuvenators
Agg Issues

- Fine graded mixes creating too many fines.
Contractor Labs

- Round robin testing of Gmm, Gmb, Voids, unconditioned and conditioned tensile strengths with Z-score.
- AMRL may begin round robin testing of Hamburg Wheel in 2016.
Longitudinal Joint Issues
Failing PFP Edge Densities

- Rapid Penetrating Emulsion
 - Used on D1, D2 & D6 PFP projects
 - Guide will be developed for RPE
 - Proposed use of RPE would be as follows:
Effect of In-Place Voids on Life

Washington State DOT Study

[Graph showing the effect of in-situ air voids on percent service life. The graph indicates a decrease in percent service life as the compaction level increases from 89% to 100%.]
Effect of In-Place Voids on Life

Washington State DOT Study

In-situ Air Voids, %

Percent Service Life

Compaction Level

93% 92% 91% 90% 89%
Effect of In-Place Voids on Life

Washington State DOT Study

![Graph showing the relationship between In-situ Air Voids and Percent Service Life. The compaction level decreases from 93% to 89% as the In-situ Air Voids increase from 7% to 11%.]
Effect of In-Place Voids on Life

Washington State DOT Study

![Graph showing the relationship between in-situ air voids and percent service life. The graph indicates a decreasing trend as in-situ air voids increase. At 93% compaction, the percent service life is 93%. At 92% compaction, the percent service life is 92%. At 91% compaction, the percent service life is 91%. At 90% compaction, the percent service life is 90%. At 89% compaction, the percent service life is 89%.](image)
Effect of In-Place Voids on Life
Washington State DOT Study

Percent Service Life vs. In-situ Air Voids, %

- 93%
- 92%
- 91%
- 90%
- 89%

Compaction Level: 91%
Effect of In-Place Voids on Life

Washington State DOT Study

![Graph showing the effect of in-place voids on service life. The x-axis represents the in-situ air voids in percentage, ranging from 7% to 11%, while the y-axis represents the percent service life. The graph shows a decreasing trend in percent service life as the in-situ air voids increase. At an in-situ air void of 7%, the percent service life is 100%, and as the voids increase to 11%, the percent service life decreases to 89%. There are arrows indicating that a small increase in voids can result in a significant decrease in service life.](image-url)
Effect of In-Place Voids on Life

Washington State DOT Study

In-situ Air Voids, %

Percent Service Life

93% 92% 91% 90% 89%

Compaction Level
Effect of In-Place Voids on Life
Washington State DOT Study

In-situ Air Voids, %

Percent Service Life

93% 92% 91% 90% 89%

Compaction Level
Effect of In-Place Voids on Life

Washington State DOT Study

The graph shows the effect of in-place air voids on percent service life for different compaction levels.

- **In-situ Air Voids, %**
 - 7%
 - 8%
 - 9%
 - 10%
 - 11%

- **Percent Service Life**
 - 100%
 - 90%
 - 80%
 - 70%
 - 60%
 - 50%

At a compaction level of 90%, the percent service life is approximately 93%. As the compaction level decreases, the percent service life decreases as well.
Surface Mix – Erase Penalties If:

Figure 5. Field Permeability-Density Relationship for 9.5 mm NMAS Mixtures
Binder Mix – Erase Penalties If:

Figure 3. Field Permeability-Density Relationship for Project 11 (19.0 mm NMAS Mix)
Paver Segregation

- Anti-segregation kits
The Future of Longitudinal Joints ??

- Require Longitudinal Joint Seal for all C/L Joints Unless:
 1. Lift Paved Against a Confined Edge
 or
 1. Full Width or Echelon Paving (i.e. no C/L Joint)
 or
 2. Remove Low Density Mat’l from Unconfined Edge (i.e. Trim Off 6 inches)
Longitudinal Joint Seal 12 Yrs Later
Longitudinal Joint Seal 12 Yrs Later
Material Transfer Device
Proposed Specification
MTD w/ > 20 psi contact pressure not allowed on lower lifts of a full depth HMA pavement until 10 in. thickness in place.
Proposed Spec

- Require an MTD on all lifts of a Full Depth pavement.

- Only MTD’s with contact pressure \(\leq 25 \text{ psi} \) allowed on lower lifts where < 10 inches in place.

- Spec will be drafted & sent to BDE.
Tack Coat Spec Status
2013 Experience

- Not Enough Tack Coat being Applied
 - Jobs visited Tack Coat was \(<\frac{1}{2}\) the specified rate.

- Improper Cleaning
 - Vacuum Sweeper either not being used or
 - Wrong type of Vacuum Sweeper.
Still Not Enough
Better to error on high side for Bond Strength
Current Tack Coat Spec

- BMPR Special is on the Website
- Latest Revisions:
 - “Vacuum sweeping shall be accomplished with a regenerative air vacuum sweeper.”
 - “A bituminous prime coat shall be applied between each lift of HMA according to Article 406.05(b).”
 - “The regenerative air vacuum sweeper shall blast recirculated, filtered air through a vacuum head having a minimum width of 6.0 feet at a minimum rate of 20,000 cubic feet per minute.”
What’s Next?

- Monitor success of pavement cleaning with brooming and air blasting or sweeping.
- Test additional emulsions for applicability to rapid set.
- Monitor the use of “spray pavers”.
- Target 2015 as BDE Special.
- Correct terminology from Prime Coat to Tack Coat for next Spec Book.
Hamburg Wheel
Hamburg Spec

- Effective Nov. 2013 Letting – All mixes must pass Hamburg Wheel

HMA – Mixture Design Verification and Production
Hamburg Spec

- Production – A 300 ton Test Strip will be required at the beginning of HMA production
 - for each Mixture with 3000 tons or more
 - for each Contract
 - The 300 tons are excluded from pay adjustments on QCP and PFP. However, requirements of Section 406 still apply.
Hamburg Spec

- Required Hamburg Wheel Test (run by Dept). If Hamburg Test fails, production shall cease.
 - All prior produced material may be paved out, if other mix criteria met.
 - No additional mix produced until Engineer receives passing Hamburg Wheel test from Contractor.
2013 PFP Summary
2013 PFP Projects

<table>
<thead>
<tr>
<th>District</th>
<th>Projects</th>
<th>Tons</th>
<th>% Jobsite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>351,596</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>34,727</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19,509</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>48800</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>54,378</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>155,000</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>89,000</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>52,381</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>981,396</td>
<td></td>
</tr>
</tbody>
</table>

Nov 1, 2013
2013 PFP Projects

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96.4</td>
<td>99.3</td>
<td>99.0</td>
<td>97.5</td>
<td>102.2</td>
<td>102.2</td>
<td>100.2</td>
<td>92.7</td>
<td>94.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100.3</td>
<td>102.8</td>
<td>99.7</td>
<td>101.4</td>
<td>103</td>
<td>101.2</td>
<td>102.6</td>
<td>97.8</td>
<td>96.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>99.6</td>
<td>97.7</td>
<td></td>
<td>99.5</td>
<td></td>
<td></td>
<td>100.9</td>
<td>99.3</td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>101.9</td>
<td>92.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101.6</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100.1</td>
<td>101.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102.4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>99.4</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100.7</td>
<td>92.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>101.9</td>
<td>96.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>99.0</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>97.8</td>
<td>100.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>99.8</td>
<td>92.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>102.1</td>
<td>100.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2013 PFP Average Pay

- Binder = 98.6
- Surface = 99.5
- Overall = 99.1
Low Longitudinal Joint Density

- Numerous ½ mile sections had pay deducts according to PFP Pay Adjustment Table or required Remedial Action
- Most sections needing Remedial Action were treated with Rapid Penetrating Emulsion (RPE)
PFP Spec Revisions for 2014

- Editorial Cleanup
- Remove wording that PFP cannot be used on Shoulders
- PFP Spec Stable Δ will become a BDE Special for November Letting
2013 QCP Summary
2013 QCP Projects

- 31 Mixtures Completed
- 211,680 Tons
- Average Pay = 99.7%
- Range => 96.4% – 100%
- Department Tested 53.0% of Samples
QCP Spec Revisions for 2014

- Allow the subplot size to be adjusted by project.
- Revised Pay Document to allow yd\(^2\) pay item.
- Eliminate Dust/AC Precision Limit.
- Added footnote to Dust/AC Pay Table that District will test all 4 sublots if Dust/AC out-of-spec.
Local Agency Acceptance
Local Agency Acceptance

One Scenario
Quality Managed Plant (QMP)

• Specification
 • QA by Local Agency
 • Mix from a Qualified Plant
 • District splits samples once/month or 10,000 tons per plant
 • District monitors problems
 • District coordinates round robin testing
HMA Inspection Course (a.k.a. - RE Training)
One day course developed for & being taught in all Districts this spring

Targets PI (Materials & Construction) personnel

Emphasis on:
- PFP & QCP Duties
- Jobsite Sampling
- Longitudinal Joints
- New Tack Coat Spec
- Paver Segregation

Future of Course – department STTP class
HMA Toughness/Brittleness Test

- ICT project, Prof. Imad Al-Qadi
- Fatigue?
- Cold weather Thermal Cracking?
Future Challenges
Rubblizing and Full Depth HMA