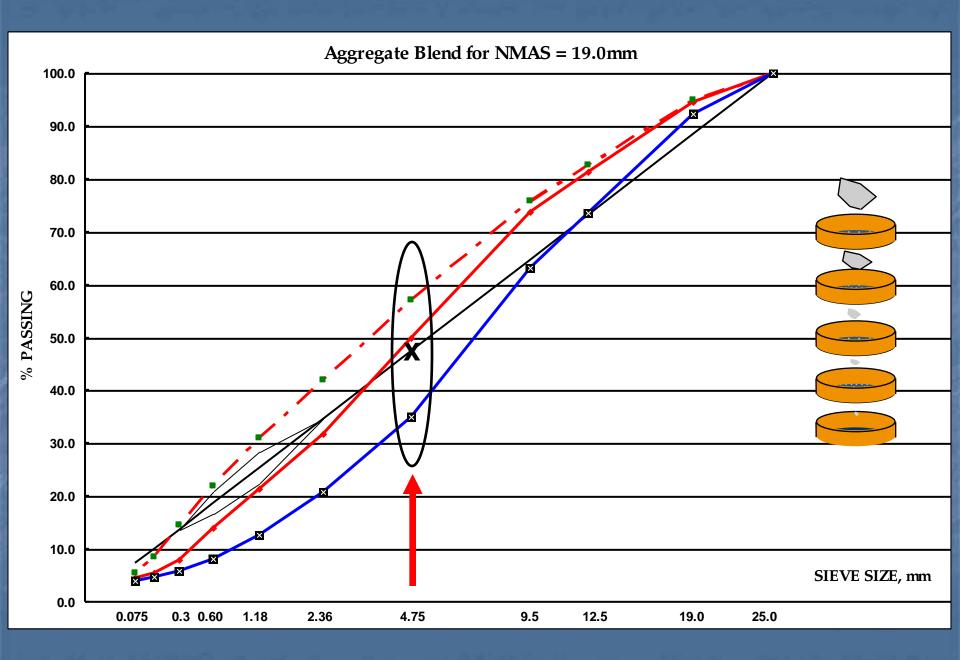
Fine-Graded Mixes

Illinois Asphalt Pavement Association Annual Meeting

March 8, 2010

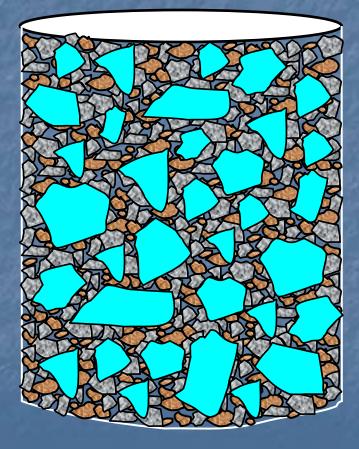
Bill Pine Emulsicoat, Inc. / Heritage Research Group

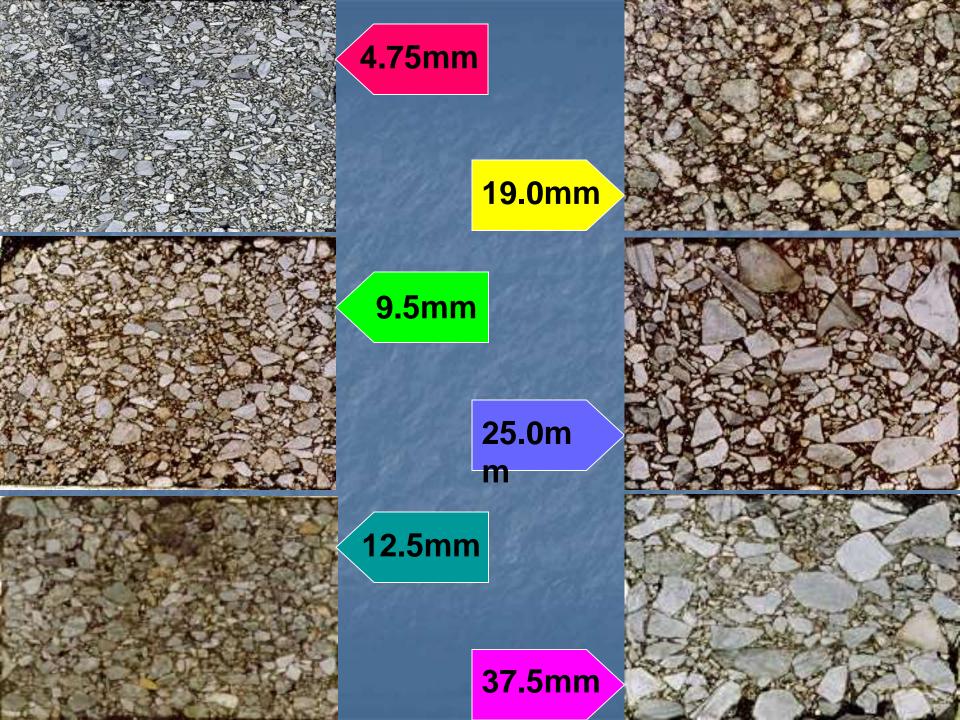

What is a *Fine-Graded* Mix?

In the past...it was called a "sand" mix

 Today...most use the % passing the Primary Control Sieve relative to the Maximum Density Line

With the *Bailey Method*...it's a function of CA and FA
 Volume

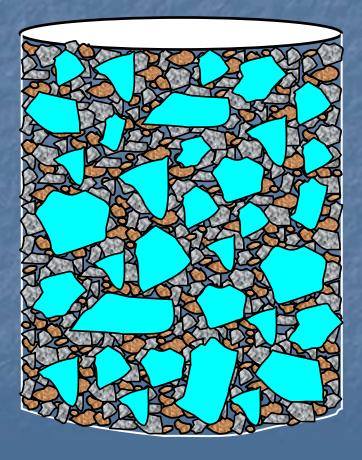

Typical *Fine-Graded* Designation


Nominal Maximum Aggregate Size	Primary Control Sieve Above is Fine-Graded Below is Coarse-Graded	IDOT <mark>Max</mark> % Passing N90 & N105 Mixes
1" (25mm)	40% Passing 4.75mm	40%
3/4" (19mm)	47% Passing 4.75mm	40%
1/2" (12.5mm)	39% Passing 2.36mm	40%
3/8" (9.5mm)	47% Passing 2.36mm	40%

Info from Fine-Graded Literature Review Performed by Murphy Pavement Technology

With the *Bailey Method* A *Fine-Graded* Mix...

 CA Volume < CA LUW
 Little to No particle-toparticle contact of CA
 Fine fraction carries most of the load
 Increased amount of FA support needed



Do Other States Specify *Fine-Graded* Mixes?

No...

 Typically gradation bands allow the Contractor to <u>choose</u> C-G or F-G
 Often...HMA used for Federal Aviation Admin. are *fine-graded*

 But even their gradation bands typically allow a choice

Should *Fine-Graded* Mixes Be Specified?

□ No...

Except... when lift thickness is too thin to allow a Coarse-Graded mix to be compacted adequately without causing degradation of the aggregate structure

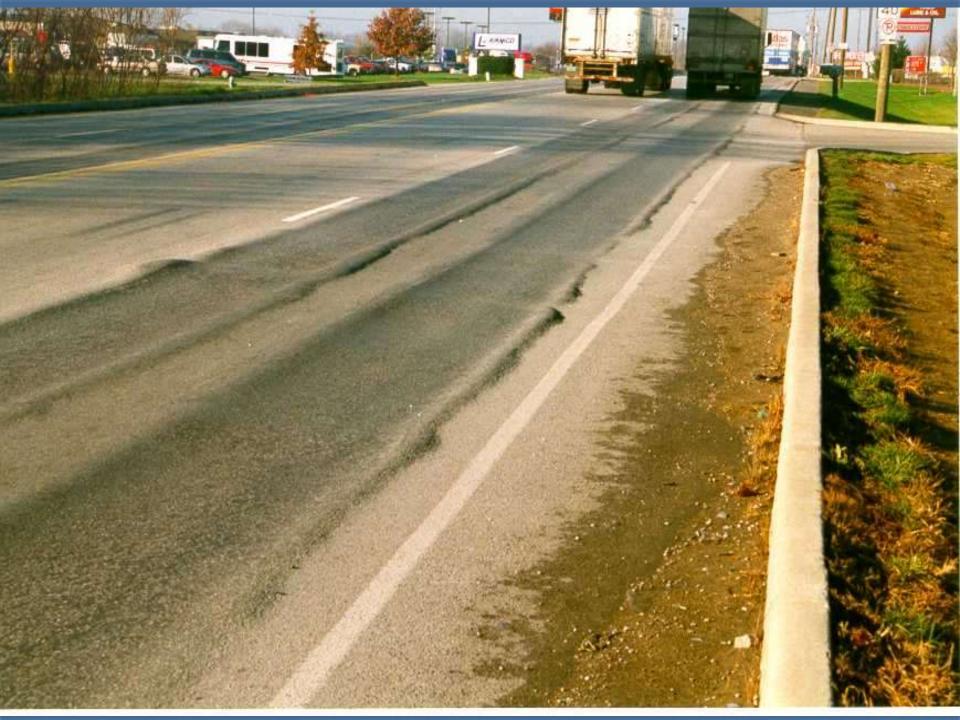
Examples...

9.5mm (3/8") Level Binder
19.0mm (3/4") Binder

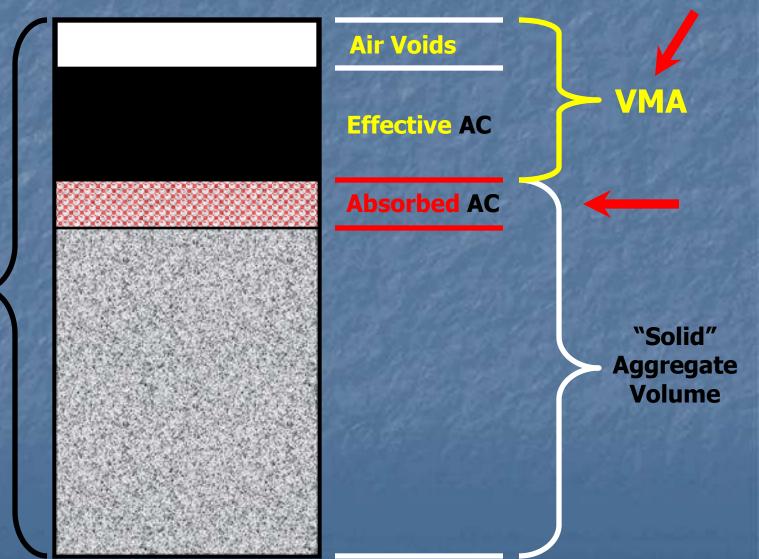
Mix Type vs. Lift Thickness

HMA Lift Thickness vs. NMAS and Mix Type

Nominal Maximum Aggregate Size	NCAT Coarse-Graded 4 x NMAS	NCAT Fine-Graded 3 x NMAS	IDOT Specification 3 x NMAS
9.5mm (3/8")	1-1/2"	1-1/8"	1-1/4"
12.5mm (1/2")	2"	1-1/2"	1-1/2"
19.0mm (3/4")	3"	2-1/4"	2-1/4"
25.0mm (1")	4"	3"	3"


Info from Fine-Graded Literature Review Performed by Murphy Pavement Technology

Stretching Our Comfort Zone...


Rutting Potential? Require More AC? Less AC Film Thickness? Stripping Potential? Less Friction? **Issues Meeting VMA?** Crushed FA Availability? ■ Use of RAP?

Superpave...

- Gradation Control Points
- ESAL Driven Items:
 - CA Angularity
 - FA Angularity
 - Flat & Elongated
 - Depth in Structure
 - Volumetrics (NMAS)
 - TSR (Stripping)
 - Dust to Effective AC Ratio

VMA = Voids + Effective AC

TOTAL Specimen < Volume

The Key to Fine-Graded Mixes

Properties of the FINE fraction... Gradation Shape Strength Texture IDOT addresses with a minimum 67:33 sand blend requirement for Manufactured vs. Natural

Fine Aggregate Angularity

Method A Fixed Gradation Measures <u>Loose</u> Voids that are a function of: Shape and Texture ■ Natural 37 – 44% Manufactured 42 – 52% Combined FAA requirement a function of **Traffic Level**

Advantages of Fine-Graded Mixes

Less permeability at the same density Less susceptible to segregation Less sensitive to gradation variability on the PCS More compactable... Improved Aesthetics (Less Macro-texture)

Advantages of *Fine-Graded* Mixes

Generally easier to compact, primarily due to lift thickness vs. NMAS Min and Max lift thickness for C-G and F-G □ 4 to 3 x NMAS for Coarse-Graded 3 to 6 x NMAS for Fine-Graded Less degradation during field compaction? Improved smoothness because the mix isn't being over-rolled? mpact for P

Impact on LJT Performance?

Designing, Producing & Constructing Fine-Graded Hot Mix Asphalt on IL Roadways (IHR27-79)

Phase 1: Literature review

- Review historical development of IDOT HMA specs
- Interview various IDOT Personnel
- Gather info from other states, FAA, and intermodal uses with similar traffic, climate, and aggregate resources

Phase 2: Mix Designs

 Development of the various aggregate structures for the Fine-Graded mixes using the Bailey Method

Phase 3: Lab Performance Testing

Hamburg wheel and the AMPT

Phase 4: Field Testing

- Mixes placed and tested with ATLAS loading at ICT
- Potential use on IDOT project

- Jim Trepanier
- Matt Mueller
- Patty Broers
- Steve Hefel
- Steve Robinson
- Laura Shanley
- Hal Wakefield
- Brett Williams
- Frank Mathewson
- Bill Buttlar
- Imad Al-Qadi
- Sam Carpenter
- Tim Murphy
- Bill Pine

Thin, Quiet, Long Lasting, High Friction, Surface Layer (IHR 27-42)

Task 1: Literature Review

- Task 2: Field Data Survey and Analysis
 Collect info on various pavement surfaces
- Task 3: Laboratory Experiment Program
 Fine-Graded SS/Dolomite with Fibers
 Fine-Graded Quartzite/Dolomite
 Fine-Graded Dolomite for use with Sprinkle Treatment
 SMA 4.75mm NMAS Quartzite with CRM AC
 Various Lab Performance Tests
 Task 4: Field Testing
 DRAFT Special Provision in Progress
 - Proposed 2010 District 1 Project
 - Task 5: Engineering Benefit Analysis

- Tom Zehr
- Abdul Dahhan
- Patty Broers
- Jim Trepanier
- Dave Lippert
- LaDonna Rowden
- Hal Wakefield
- John Lavalee
- Bill Pine
- Imad Al-Qadi
- Sam Carpenter
- Jeff Kern

